Optimizing Traveling Salesman with Branch and Bound

Eliot Atlani!, Xenia Dela Cueva!, Alice Cheng!, and Itamar Rocha Filho!

"Harvard University

September 5, 2025

Abstract

This project implements and analyzes parallel solutions to the Traveling Salesman Problem (TSP)
using the Branch and Bound algorithm. We developed and benchmarked four implementations: a
sequential baseline, an OpenMP shared-memory version, an MPI distributed-memory version, and a
hybrid MPI+OpenMP approach. Our solutions optimize work distribution and communication pat-
terns to maximize parallel efficiency. We conducted performance analysis including sequential threshold
optimization, strong scaling, and weak scaling tests. Our results demonstrate that for moderate prob-
lem sizes (15-20 cities), the MPI implementation achieved the best performance. Meanwhile, the hybrid
implementation exhibited better scaling potential on larger problem instances (e.g., 24 cities) spanning
multiple nodes. We identify bottlenecks in each implementation, including load imbalance, communica-
tion overhead, and memory access patterns. This work offers strategies for parallelizing combinatorial
optimization problems and applies to other branch-and-bound algorithms in logistics and operations
research.

1 Background and Significance

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a NP-hard problem in combinatorial optimization, where the
objective is to find the shortest possible route that visits each city exactly once and returns to the starting
point. Solutions are computationally expensive from the factorial growth of the solution space, making
the problem intractable for large instances without advanced optimization techniques.

The Brand-and-Bound algorithm

The Branch-and-Bound (B&B) algorithm offers an exact approach by systematically pruning suboptimal
paths in the search tree using bounds. However, it suffers from performance bottlenecks due to the se-
quential nature of recursive tree expansion and bound computation.

The B&B algorithm can be parallelized at multiple levels: OpenMP can be used to speed up fine-grained
operations like branching, bounding, and local search tree exploration within each process, while MPI
can distribute subtrees of the search space across nodes as well as sharing updates.

Significance and comparison

Our hybrid approach combines the shared-memory efficiency of OpenMP with the distributed computing
power of MPI, enabling high-performance execution on HPC systems. While prior work often adopts

a single parallelization model, we implemented and compared four versions: a sequential baseline, an
OpenMP version using task-based parallelism with thresholding, an MPI version with static distribution
of root-level branches, and a hybrid MPI+OpenMP version that combines coarse-grained distribution
across nodes with fine-grained parallelism within each node. By supporting effective pruning and bal-
anced workload distribution, our approach extends the scalability of exact TSP solvers and offers a flexible
foundation for tackling other combinatorial optimization problems.

TSP is crucial for routing logistics in companies like Amazon, UPS, FedEx, Instacart, and DoorDash,
which must deliver thousands of packages efficiently. As stop counts grow factorially and real-world con-
ditions change constantly, TSP solutions must be fast and adaptive. Optimizing these problems allows
real-time route updates, cutting costs and ensuring on-time service.

2 Scientific Goals and Objectives

In this project, our goal is to build an implementation that can solve larger traveling salesman problems
using the branch and bound algorithm. Our two main objectives are:

1. Scale branch-and-bound to larger instances
2. Quantify and optimize parallel efficiency

Since the travelling salesman problem is NP-hard with exponential search complexity, we implemented
a serial benchmark of TSP, a parallelized version using only OpenMP, a parallelized version using only
MPI, and a hybrid parallelized version using both OpenMP and MPI. We then compared the relative
performance of these implementations, as well as the relative performance of different node/thread con-
figurations for a given implementation.

3 Algorithms and Code Parallelization

Branch and Bound TSP implementation

The core algorithm follows a classic recursive B&B structure. A complete distance matrix is first made
by computing the shortest path between every pair of TSP nodes using Dijkstra’s algorithm, applied on
a general graph structure. This matrix acts as the cost function for evaluating partial tours.

At each recursive step:
1. The algorithm checks whether a complete tour has been formed.

2. If incomplete, a lower bound is calculated by summing the current path cost and the minimum
outgoing edge for each unvisited node (a simple yet effective bounding heuristic).

3. Subtrees with a bound greater than the current best tour cost are pruned.

4. Otherwise, the algorithm explores each unvisited city recursively

Initial Memory Requirements

Each process maintains N x N distance matrix of double values (distMatrix), requiring O(N?) space.
Since each double is 8 bytes, this is approximately 8 MB for N = 1000. The graph is also stored as
an adjacency list, using O(E) memory, where E is the number of edges. For dense graphs (E ~ N?),
this can take up to ~12 MB at N = 1000. Each process or thread keeps a copy of bestTour (O(N)),
bestCost (one double), and temporary structures like visited arrays and partial paths. Overall, total
memory usage per process is about 20 MB for N = 1000. This scales quadratically with N and linearly
with the number of MPI processes. All SLURM benchmark scripts (serial, OpenMP, MPI, and hybrid)
requested 16 GB of memory per job, which was sufficient for all problem sizes tested (up to 24 cities).

OpenMP implementation

This version uses OpenMP to parallelize the recursive Branch and Bound algorithm for TSP on shared-
memory systems. Recursive branching is parallelized using #pragma omp task inside a #pragma omp taskgroup,
with tasks only spawned when the number of remaining cities exceeds a sequentialThreshold to avoid
excessive overhead. Shared variables (bestCost, bestTour) are protected by an omp_lock_t (bestLock),

which is initialized via omp_init_lock() and managed using omp_set_lock() and omp_unset_lock().

To minimize locking during reads, #pragma omp atomic read is employed for pruning checks, allowing
low-overhead access to bestCost. The parallel region begins with #pragma omp parallel, and a single
thread is designated as the root with #pragma omp single to coordinate task creation. Within each task,
bound computations and recursive calls execute sequentially to reduce complexity and locking, though
further vectorization can be used in future optimizations.

OpenMP enables multiple threads to concurrently explore different regions of the search space and benefits
from work stealing from the task scheduler. Eliot Atlani was the main contributor for this implementa-
tion. While OpenMP works well on single-node, shared-memory systems, it does not scale across multiple
machines. This limitation leads us to explore MPI.

MPI

The MPI implementation, with the code developers being Xenia Dela Cueva, Alice Cheng , and Eliot
Atlani, runs the TSP Branch and Bound in parallel on multiple machines with separate memory. It splits
the search tree across processes to speed up solving TSP, which becomes much harder as the number of
cities increases.

The implementation begins with root-level branches (like second city choices) being assigned to processes
using (i—1) mod numProcs = rank so that each process explores a different part of the search space. Each
rank builds its own distance matrix using the Floyd-Warshall algorithm (buildDistanceMatrix) and ex-
ecutes a recursive search with explore () .Communication and synchronization is done with MPI_Allreduce
and MPI_MINLOC to identify the process with the lowest-cost tour. This is broadcast to all processes using
MPI_Bcast. These operations aim to be synchronization points that minimize overhead communication.
This implementation supports multi-node execution by using commands like mpirun -np 8 ./tsp_mpi.
This enables each node to run one or more processes, allowing the algorithm to scale beyond the limits
of OpenMP.

MPI reduces runtime by splitting computation at the top-level branches, which is the most expensive
level. It does require each process to maintain a full copy of the graph and distance matrix in memory,

but avoids interprocess communication during search. There would be no disk I/O bottlenecks during ex-
ecution. This pure-MPT solution is ideal for HPC systems with distributed nodes. Although alternatives
like dynamic load balancing could improve efficiency for uneven branches, static distribution worked for
our experiments.

Hybrid

To take advantage of both process-level and thread-level parallelism, we combined our two previous
approaches to create a hybrid approach using both OpenMP and MPI. Alice Cheng was the primary con-
tributor for this implementation. We first enhanced the branch-and-bound approach with a precomputed
all-pairs shortest-path matrix. We loaded the input graph via a custom Graph class and computed its
distance closure with the Floyd—Warshall algorithm, storing an N x N matrix of doubles (time complexity
O(N3), memory O(N?)). This approach ensures tight lower bounds for pruning. An alternative is to run
Dijkstra’s algorithm from each node (N times, O(N E'log N)) or to use heuristic relaxations (e.g. 1-tree),
but Floyd—Warshall was chosen for its conceptual simplicity and uniform cost structure for moderate N.

For the branch-and-bound algorithm, we used a recursive approach; from a partial path we compute
a bound by adding the minimum outgoing edge from the current city plus, for each unvisited city, its
cheapest exit edge (or return edge to the depot). Subtrees whose bounds exceed the current global best
are pruned. On completion of each full tour, the best cost and tour are updated atomically under an
OpenMP lock.

The core dependencies for this implementation are the C++17 standard library, OpenMP (for intra-
node task parallelism), and MPI (for inter-node coordination). An overview of the two parallelism levels
is:

e MPI: Each rank receives a disjoint subset of branches of the first step. After a local search, the
ranks perform an MPI_Allreduce with MPI_MINLOC to identify the best global cost and its owner,
followed by an MPI Bcast of the winning tour.

e OpenMP: Within each MPI process, the remaining search tree is explored through OpenMP tasks
organized by a user-tunable ’sequential threshold’ on subtree size. A global omp_lock_t serializes
updates to the shared bestCost variable.

Our implementations do not use GPU or CUDA/OpenACC acceleration. Memory usage is dominated
by the O(N?) distance matrix (e.g. for N = 1000, ~8 MB) and the sparse adjacency list (proportional
to edge count). In addition to OpenMP and MPI for parallelism, we used standard C++ STL libraries like
vector, queue, algorithm, limits, and chrono for data structures and built-in functions. The input
instances were from TSPLIB, a benchmark dataset for Traveling Salesman Problem (TSP) instances, as
well as a custom connected graph. I/O is limited to a single file read of the input graph; all subsequent
data resides in RAM.

This hybrid design balances the coarse-grain MPI distribution of independent subtrees with fine-grain
OpenMP tasking, yielding scalable performance on CPU-based clusters without specialized accelerators.
Validation, Verification

To ensure the correctness of our parallel implementations, we employed a multi-faceted validation strat-
egy. First, we verified our solutions against the TSPLIB benchmark library, which contains reference TSP

instances with known optimal solutions. For smaller instances, we cross-validated the tour costs produced

by all four implementations (sequential, OpenMP, MPI, and hybrid) to ensure they all converged to iden-
tical optimal costs.

For validation on randomly generated instances, we used the sequential implementation as our ground
truth reference. We implemented deterministic pruning strategies to ensure that different execution orders
across parallel runs would still produce identical optimal tour costs, even if the exact path representation
differed due to equivalent-cost alternatives.

Our validation process included:
e Consistency checks ensuring all parallel implementations produce identical optimal costs
e Verification that the final tours are valid (visit each city exactly once and return to start)
e Validation of bound calculation correctness to ensure proper pruning

To verify numerical consistency, we implemented double-precision arithmetic throughout the codebase
and ensured identical computation of distance matrices across all implementations. The Floyd-Warshall
algorithm was validated independently to confirm accurate distance calculations between city pairs. This
aspect of the implementation was handled by Itamar Rocha Filho, who ensured consistency and correctness
across versions.

4 Performance Benchmarks and Scaling Analysis

We first ran our sequential TSP solver to find optimal paths for up to 19 cities. Figure 1 shows an
exponential increase in runtime as the number of cities to visit increases. To begin our parallelization

Figure 1: Runtime of Sequential Implementation for Varying TSP Problem Sizes

—o— seq
4000 A

3000 A

2000 -

Time (seconds)

1000 A

10 12 14 16 18
Size
efforts, we focused on using only OpenMP. Our first step was to parallelize the search step for the first
city, leaving the rest of the algorithm to use the sequential implementation. We observed an improvement,

and proceeded to run experiments varying the sequential threshold, or the maximum number of cities
along the path to use the parallel algorithm to search before switching back to sequential. We also varied

Figure 2: Sequential Threshold Analysis for OpenMP Implementation

Combined Benchmark: Time vs. Sequential Threshold
Differentiated by Thread Count

—e— 1thread

2 threads
—e— 4 threads
—e— 8threads
—e— 16 threads

Time (seconds)
5
5

8 10
Sequential Threshold

the number of threads. In figure 2, we show the results of this experiment for a 15 city tour. The optimal
sequential threshold is around 8 to 12 cities, with the best performance from using 8 or 16 threads. We
also performed a strong scaling analysis for this implementation as shown in figure 3. The plot shows an

Figure 3: Strong Scaling of OpenMP Implementation

Strong Scaling Benchmark: Time vs. Threads

[1] —e— Parallel
@ Serial Baseline
30

251

20 4

Time (seconds)

10 A

20 2! 22 23 2¢
Threads

initial improvement in runtime with an increase in number of threads but then the runtime increases for
higher number of threads, likely due to added overhead from thread coordination/communication.

We then created a parallel implementation using only MPI, with runtimes as shown in figure 4. We
observe a significant improvement in runtime when using more MPI processes, with diminishing returns
beyond 8 processes. This is likely due to increasing overhead resulting from collective MPI operations,
such as MPI_Allreduce, whereby processes need to communicate essential information and updates with
each other. Since our problem size is relatively small (15 cities), the overhead is more significant relative to
the actual runtime. Finally, we combined our OpenMP and MPI implementations for a hybrid approach.
We tested a few configurations and compared their runtimes, as shown in figure 5. Again, we see that
there is a significant improvement in runtime when increasing the number of processes, but that there
are diminishing returns beyond 16 processes. In addition, when using 1 process and 4 threads, we would

Figure 4: Runtime of MPI-only Implementation

Process Scaling Benchmark

81 @ —e— serial
mpi

12 4 8 16 32
Number of MPI Processes

Figure 5: Comparison of Runtimes for Different Configurations of Hybrid Implementation

TSP Performance Comparison of Different Configurations

expect a runtime of 344& = 8.57 seconds in the ideal case, but our runtime is significantly quicker. Some
potential explanations include:

1. Cache effects: Since each thread works on a smaller subset of the problem, more of the working
set for each thread fits into the cache, leading to better cache utilization.

2. Hardware architecture benefits: Modern CPUs often have shared caches and other architectural
features that parallel code can leverage more efficiently than serial code.

3. Compiler optimizations: The compiler might apply different optimization strategies to parallel
code, resulting in more efficient machine code.

We also performed a similar sequential threshold analysis for the hybrid implementation in figure 6.
Again, we see an optimal sequential threshold of around 7 to 10 cities with the best performance from
32 processes and 4 threads per process. We also performed strong-scaling analysis for the hybrid imple-
mentation, as shown in figure 7. In this plot, we see a speedup in runtime as the total number of threads
(multiple processes and multiple threads per process) increases. Using the optimal configurations for each
implementation, we compared the runtimes of each implementation for problem sizes up to 19 cities in
figure 8. Our MPI-only implementation performed the best, followed by the hybrid approach and then
OpenMP-only. Some possible explanations for why the hybrid approach was worse than the MPI-only
approach are:

Figure 6: Sequential Threshold Analysis of Hybrid Implementation

Hybrid Combined Benchmark

—&— 32 proc X 1 thr
32 proc x 2 thr
—8— 32 proc x 4 thr

2 4 6 8 10 12 14
Sequential Threshold

Figure 7: Strong Scaling Analysis of Hybrid Implementation

Strong Scaling: Execution Time vs. Total Threads

20- —e— Hybrid MPI+OpenMP
-~~~ Serial Implementation

Execution Time (seconds)

5-
————— 1 —

40 60 80 100 120
Total Number of Threads (MPI Processes x OpenMP Threads)
Strong Scaling: Speedup vs. Total Threads

---Ideal Linear Scaling

]
3

5

8
\
\

Speedup (relative to serial)

0 20 40 60 80 100 120
Total Number of Threads (MPI Processes x OpenMP Threads)

1. Overhead costs: The hybrid approach accumulates overheads from both systems - MPI’s mes-
sage passing and process management plus OpenMP’s thread creation and synchronization. These
combined overheads can reduce performance.

2. Load balancing complications: Balancing work becomes more complex when considering two
levels of parallelization. If either level has imbalances, the overall performance suffers.

3. Memory hierarchy utilization: Pure MPI might make better use of distributed memory re-
sources, while the hybrid approach has to manage both shared memory (OpenMP) and distributed
memory (MPI) models.

4. Implementation quality: The pure MPI implementation might simply be more optimized than
the hybrid one, which is often more complex to tune perfectly with the extra considerations of the
interaction between OpenMP and MPI.

Table 2 shows the workflow parameters for slurm jobs used to run our experiments and simulations
for all implementations, since we ran multiple implementations in the same job for comparison purposes.

350 1

300 A

250 A

=
v
o

Time (seconds)

=
[=
o

wv
=]

(a) Runtime comparison of parallel implementations

Figure 8: Runtime and Speedup Comparisons of Parallel Implementations

Runtime vs Size for Non Sequential Implementations 1000

Speedup vs Size for Parallel Implementations

N

[=}

o
L

—8— openmp
mpi
—e— hybrid

10 12 14 16
Size

200 A ji
0 =

—8— openmp
mpi
—a— hybrid
__ 800
v
E
=1
a
E 600
@
E
=
o
§ 400
a
=
©
[
v
=}
w
18 10 12

14 16 18
Size

(b) Speedup comparison of parallel implementations

Implementation Threads / Processes | Time (s)
Serial 1 32.142100
OpenMP 16 16.744800
MPI 16 0.614629
Hybrid (OpenMP + MPI) 16 0.614712

Table 1: TSP runtime comparison across implementations using 16 threads/processes. Values taken from
respective benchmark CSVs.

Values

Typical wall clock time (minutes)

Typical job size (nodes)
Memory per node (GB)

Maximum number of input files in a job
Maximum number of output files in a job
Library used for I/O fstream, iomanip

3
16
16

1

1

Table 2: Workflow parameters of slurm jobs used during project development.

5 Resource Justification

To estimate computational needs, we benchmarked our Traveling Salesman Problem (TSP) on Harvard’s
cluster. The hybrid MPI + OpenMP implementation took approximately 160 seconds to solve a 24-city
instance using 2 MPI ranks (1 per node) and 32 OpenMP threads per process. This corresponds to:

node hours = 2nodes x

160 seconds
3600 seconds

hour

~ 0.0889 node hours

Each production run solves one TSP instance. We tested different algorithms (serial, OpenMP, MPI,
hybrid) and varied parameters like random seed, threshold, and city count. We define two simulation
classes: smaller graphs (19 cities) for comparison, and larger graphs (24 cities) for testing the hybrid
approach as seen in Table 3.

Simulations Node hours / simulation Total node hours

Small Graphs (19 cities) 20 0.0889 1.778
Large Graphs (24 cities) 50 0.2667 13.335

Table 3: Estimated node hour usage based on actual TSP benchmarks

The estimated usage is 15.11 node hours (15.11 hours on one node, or about 3.78 hours if run across
4 nodes). Each simulation is short but offers a baseline for scaling to larger or more complex TSP
applications.The hybrid implementation uses MPI to split top-level search branches across processes in
a distributed-memory setup, and OpenMP for task-based recursion within each process using shared-
memory parallelism. We do not use GPU acceleration (CUDA /OpenACC). Memory usage increases with
problem size due to 3 main factors: the O(N?) distance matrix, recursive stack depth from branch-and-
bound, and overhead from OpenMP task scheduling. For problems with more than 20 cities, memory
becomes a limiting factor— especially when many branches are explored concurrently. Effective pruning
is essential not only for computational speed but also for managing memory. Our benchmarks in the
19-24 city range (using 16-32 threads or processes) showed significant memory usage, with requirements
expected to grow exponentially for larger instances. Future scaling will require careful resource planning
to manage both computation and memory demands.

References
[1] Harvard University. Lecture 8: OpenMP Basics. Cambridge, Massachussetts, 2025.

[2] Harvard University. Lecture 13: MPI: Beyond the Basics. Cambridge, Massachussetts, 2025.

[3] Heidelberg University. TSPLIB: A library of sample instances for the TSP. Heidelberg, Germany,
1993.

[4] Indian Institute of Technology Travelling Salesman Problem: Parallel Implementations Analysis.
Bombay, Mumbai, India, 2021.

10

	Background and Significance
	Traveling Salesman Problem
	The Brand-and-Bound algorithm
	Significance and comparison

	Scientific Goals and Objectives
	Algorithms and Code Parallelization
	Branch and Bound TSP implementation
	Initial Memory Requirements
	OpenMP implementation
	MPI
	Hybrid
	Validation, Verification

	Performance Benchmarks and Scaling Analysis
	Resource Justification

